Muon Background Estimation from 1/3 and 2/3 samples ### Tetsuro Sekiguchi #### KEK/University of Tokyo - Motivation - Background Estimation from 1/3 and 2/3 samples - How does the backgound level in the candidate cell change? - Outside-the-BOX Study? - Summary ## Motivation - Muon background level in the PRL paper ⇒ obtained from full sample to reduce statistical error. - All other backgrounds were estimated with 2/3 samples. - What is the muon background level obtained from 1/3 or 2/3 sample? \Rightarrow For my Ph.D thesis, all the backgrounds should be derived in the same (consistent) ways. # Background Estimation from 1/3 and 2/3 samples | | Tail Background | | | | | |-------|---------------------|---------------------|---------------------|--|--| | | Full | 1/3 sample | 2/3 sample | | | | 1 × 1 | 4.636 ± 0.206 | 3.971 ± 0.271 | 4.960 ± 0.250 | | | | PV' | 5.100 ± 0.225 | 4.414 ± 0.296 | 5.441 ± 0.274 | | | | TD' | 4.580 ± 0.204 | 3.900 ± 0.266 | 4.915 ± 0.248 | | | | KIN' | 4.636 ± 0.206 | 3.971 ± 0.271 | 4.960 ± 0.250 | | | | BOX | 0.0103 ± 0.0012 | 0.0094 ± 0.0015 | 0.0110 ± 0.0013 | | | | BOX' | 0.0441 ± 0.0056 | 0.0401 ± 0.0070 | 0.0473 ± 0.0062 | | | | | Band Background | | | | |-------|---------------------|---------------------|---------------------|--| | | Full | 1/3 sample | 2/3 sample | | | 1 × 1 | 2.187 ± 0.138 | 0.654 ± 0.109 | 2.964 ± 0.194 | | | PV' | 3.849 ± 0.243 | 1.142 ± 0.191 | 5.225 ± 0.342 | | | TD' | 2.178 ± 0.137 | 0.649 ± 0.109 | 2.951 ± 0.193 | | | KIN' | 2.269 ± 0.144 | 0.649 ± 0.109 | 2.951 ± 0.193 | | | BOX | 0.0049 ± 0.0006 | 0.0016 ± 0.0003 | 0.0066 ± 0.0008 | | | BOX' | 0.0244 ± 0.0030 | 0.0076 ± 0.0017 | 0.0328 ± 0.0041 | | ## How the background level in the candidate cell change? | | Tail | Band | | |-------------|-------------------|-------------------|--| | Full sample | 0.303 ± 0.044 | 0.052 ± 0.014 | | | 1/3 sample | 0.428 ± 0.099 | 0.016 ± 0.011 | | | 2/3 sample | 0.232 ± 0.049 | 0.070 ± 0.019 | | - Relatively large tail background in 1/3 sample is just due to the statistics in normalization branch. - Should we use the background level obtained from 2/3 sample for the candidate cell? or can we still use that from full sample? # Outside-the-BOX Study? - \bullet Perform the Outside-the-BOX study with 2/3 sample. - \bullet Predictions from full and 2/3 samples. | | $K_{\mu 2}$: TD×kin.(tail) | | | | | |-------------------|-----------------------------|-----------------|-----------------|------------------|------------------| | | 10×10 | 20×20 | 50×50 | 80×50 | 120×50 | | predict (full): | 0.35 ± 0.03 | 1.44 ± 0.1 | 9.07 ± 0.62 | 14.52 ± 0.99 | 21.78±1.48 | | predict $(2/3)$: | 0.37 ± 0.03 | 1.51 ± 0.12 | 9.54 ± 0.75 | 15.27 ± 1.20 | 22.91 ± 1.80 | | observe: | 0±0 | 1±1 | 12 ± 3.5 | 16±4 | 25±5 | | | $K_{\mu 2}$: TD×kin.(band) | | | | | |-------------------|-----------------------------|-----------------|-----------------|-----------------|------------------| | | 10×10 | 20×20 | 50×50 | 80×50 | 120×50 | | predict (full): | 0.32 ± 0.03 | 1.28 ± 0.11 | 3.22 ± 0.27 | 5.17 ± 0.44 | 10.35 ± 1.07 | | predict $(2/3)$: | 0.42 ± 0.04 | 1.73 ± 0.15 | 4.37 ± 0.37 | 7.00 ± 0.60 | 14.03 ± 1.47 | | observe: | 1±1 | 1±1 | 4 ± 2 | 5 ± 2.2 | 11±3.3 | ## **Summary** - Muon background level from 1/3 and 2/3 samples were estimated. - Larger background level was obtained from 2/3 sample than that from full sample due to statistical fluctuation of the number of remained events in the normarization branch. - Smaller background level in the candidate cell was obtained from 2/3 sample. - It should be decided which sample (2/3 or full) is used for my Ph.D thesis. - -2/3 sample for the estimation of total muon background level? - full or 2/3 sample for the estimation of background level in the candidate cell?